Total synthesis of human relaxin and human relaxin derivatives by solid-phase peptide synthesis and site-directed chain combination.
نویسندگان
چکیده
Human relaxin, a two-chain protein hormone, was synthesized by solid-phase peptide synthesis in combination with a novel thiol-protecting group strategy whereby the three disulfide bonds could be synthesized sequentially and without error. The final product was shown to be homogeneous by reversed-phase high performance liquid chromatography and electrophoresis and had the correct amino acid composition and sequence. Tryptic digestion and peptide mapping of the synthetic relaxin by reversed-phase high performance liquid chromatography resulted in a pattern identical with that produced by standard tryptic relaxin fragments synthetized by different methods. Three human relaxin derivatives containing oxidized methionine, formyltryptophan, and bis[B13,B17-citrulline]-relaxin, were produced and their biological activity and structural similarity to human relaxin was assessed. All derivatives, except those containing modified tryptophan residues, showed indistinguishable circular dichroic spectra, indicating that the modifications did not cause significant structural changes. However, only human relaxin and the tryptophan- and methionine-protected relaxin derivatives showed bioactivity. The derivative in which the two arginines in positions B13 and B17 had been replaced by the uncharged isosteric amino acid citrulline were biologically inactive. This observation confirms preliminary studies (Büllesbach, E. E. and Schwabe, C. (1988) Int. J. Pept. Protein Res. 32, 361-367) that suggested that these two conserved arginines located in the midregion of the relaxin B chain are essential for the function of the hormone.
منابع مشابه
Preparation of canine relaxin by Fmoc-solid phase synthesis and regioselective disulfide bond formation within the A- and B-chains
Background: The chemical synthesis of multi-disulfide bonded heterodimeric peptides such as insulin has long been of significant scientific and commercial interest as well as a major challenge. The development of improved protocols which includes regioselective disulfide bond formation has greatly advanced the capacity to prepare and study insulin-like peptides including canine relaxin, an impo...
متن کاملSynthetic Covalently Linked Dimeric Form of H2 Relaxin Retains Native RXFP1 Activity and Has Improved In Vitro Serum Stability
Human (H2) relaxin is a two-chain peptide member of the insulin superfamily and possesses potent pleiotropic roles including regulation of connective tissue remodeling and systemic and renal vasodilation. These effects are mediated through interaction with its cognate G-protein-coupled receptor, RXFP1. H2 relaxin recently passed Phase III clinical trials for the treatment of congestive heart fa...
متن کاملThe minimal active structure of human relaxin-2.
H2 relaxin is a peptide hormone associated with a number of therapeutically relevant physiological effects, including regulation of collagen metabolism and multiple vascular control pathways. It is currently in phase III clinical trials for the treatment of acute heart failure due to its ability to induce vasodilation and influence renal function. It comprises 53 amino acids and is characterize...
متن کاملA perfluoroaromatic abiotic analog of H2 relaxin enabled by rapid flow-based peptide synthesis.
H2 relaxin is a pleiotropic peptide hormone with clinical potential. Here we report on the reaction and use of hexafluorobenzene as an intramolecular disulfide replacement between Cys10 and Cys15 in the A-chain of H2 relaxin. Using flow-based Fmoc solid-phase peptide synthesis methodology we were able to obtain high-quality H2 relaxin fragments that were previously reported as challenging to sy...
متن کاملSynthesis, Conformation, and Activity of Human Insulin-Like Peptide 5 (INSL5)
Insulin-like peptide 5 (INSL5) was first identified through searches of the expressed sequence tags (EST) databases. Primary sequence analysis showed it to be a prepropeptide that was predicted to be processed in vivo to yield a two-chain sequence (A and B) that contained the insulin-like disulfide cross-links. The high affinity interaction between INSL5 and the receptor RXFP4 (GPCR142) coupled...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 17 شماره
صفحات -
تاریخ انتشار 1991